Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa.

نویسندگان

  • Joseph B McPhee
  • Manjeet Bains
  • Geoff Winsor
  • Shawn Lewenza
  • Agnieszka Kwasnicka
  • Michelle D Brazas
  • Fiona S L Brinkman
  • R E W Hancock
چکیده

When grown in divalent cation-limited medium, Pseudomonas aeruginosa becomes resistant to cationic antimicrobial peptides and polymyxin B. This resistance is regulated by the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems. To further characterize Mg(2+) regulation in P. aeruginosa, microarray transcriptional profiling was conducted to compare wild-type P. aeruginosa grown under Mg(2+)-limited and Mg(2+)-replete conditions to isogenic phoP and pmrA mutants grown under Mg(2+)-limited conditions. Under Mg(2+)-limited conditions (0.02 mM Mg(2+)), approximately 3% of the P. aeruginosa genes were differentially expressed compared to the expression in bacteria grown under Mg(2+)-replete conditions (2 mM Mg(2+)). Only a modest subset of the Mg(2+)-regulated genes were regulated through either PhoP or PmrA. To determine which genes were directly regulated, a bioinformatic search for conserved binding motifs was combined with confirmatory reverse transcriptase PCR and gel shift promoter binding assays, and the results indicated that very few genes were directly regulated by these response regulators. It was found that in addition to the previously known oprH-phoP-phoQ operon and the pmrHFIJKLM-ugd operon, the PA0921 and PA1343 genes, encoding small basic proteins, were regulated by Mg(2+) in a PhoP-dependent manner. The number of known PmrA-regulated genes was expanded to include the PA1559-PA1560, PA4782-PA4781, and feoAB operons, in addition to the previously known PA4773-PA4775-pmrAB and pmrHFIJKLM-ugd operons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa.

The two-component regulatory system PhoP-PhoQ of Pseudomonas aeruginosa regulates resistance to cationic antimicrobial peptides, polymyxin B and aminoglycosides in response to low Mg2+ conditions. We have identified a second two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides. This system responds to limiting Mg2+, and is affe...

متن کامل

Contribution of the PhoP-PhoQ and PmrA-PmrB Two-Component Regulatory Systems to Mg -Induced Gene Regulation in Pseudomonas aeruginosa

When grown in divalent cation-limited medium, Pseudomonas aeruginosa becomes resistant to cationic antimicrobial peptides and polymyxin B. This resistance is regulated by the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems. To further characterize Mg regulation in P. aeruginosa, microarray transcriptional profiling was conducted to compare wild-type P. aeruginosa grown under Mg -limite...

متن کامل

Two-component regulatory systems can interact to process multiple environmental signals.

The PhoP/PhoQ two-component system of Salmonella typhimurium governs transcription of some 25 loci in response to the extracellular concentration of Mg2+. We have now identified one of these loci as pmrCAB, which codes for a two-component system that mediates resistance to the antibiotic polymyxin B. Transcription of seven of 25 PhoP-activated loci was dependent on a functional PmrA protein, th...

متن کامل

Adaptive resistance to the "last hope" antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS.

As multidrug resistance increases alarmingly, polymyxin B and colistin are increasingly being used in the clinic to treat serious Pseudomonas aeruginosa infections. In this opportunistic pathogen, subinhibitory levels of polymyxins and certain antimicrobial peptides induce resistance toward higher, otherwise lethal, levels of these antimicrobial agents. It is known that the modification of lipi...

متن کامل

PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance.

Rapid adaptation to environmental challenge is essential for the survival of many bacterial species, and is often effectively mediated by two-component regulatory systems. Part of the adaptive response of Pseudomonas aeruginosa to Mg2+ starvation is overexpression of the outer-membrane protein OprH and increased resistance to the polycationic antibiotic polymyxin B. Two overlapping open reading...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 188 11  شماره 

صفحات  -

تاریخ انتشار 2006